Fractional nonlinear diffusion equation: numerical analysis and large time behavior

Florian Salin

joint work with Goro Akagi (Tohoku University) and Hélène Hivert (Géosciences Rennes)

Séminaire Equations aux dérivées partielles 06/05/2025

Outline

$$\partial_t(v^{q-1}) + (-\Delta)^{\frac{\alpha}{2}}v = 0.$$

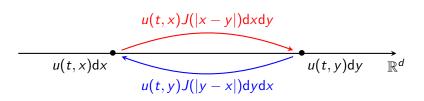
- $\alpha \in (0,2)$
- $q \in (1,2)$: fractional porous medium equation,
- $q \in (2, +\infty)$: fractional fast diffusion equation.

Purpose:

- Energy decay estimates,
- Numerical scheme preserving energy decay estimates,
- Large time behavior.

- Background on fractional nonlinear diffusion equation
- 2 Numerical analysis of fractional nonlinear diffusion equation
- Computation of extinction time and large time asymptotics

Nonlocal diffusion equation with general interaction kernel



u(t,x): density, J(|x-y|): interaction kernel.

$$\partial_t u(t,x) = \int_{\mathbb{R}^d} u(t,y) J(|x-y|) \mathrm{d}y - u(t,x) \int_{\mathbb{R}^d} J(|x-y|) \mathrm{d}y$$

$$= \text{P.V.} \int_{\mathbb{R}^d} (u(t,y) - u(t,x)) J(|x-y|) \mathrm{d}y$$
for singular kernel J := $\lim_{r \to 0} \int_{\mathbb{R}^d \setminus B_r(x)} (u(t,y) - u(t,x)) J(|x-y|) \mathrm{d}y$

A particular choice of kernel: the fractional diffusion equation

Choice of kernel: $J_{\frac{\alpha}{2}}(|x-y|) = \frac{1}{|x-y|^{d+\alpha}}, \quad \alpha \in (0,2), \quad d$: dimension

Definition (Fractional Laplacian)

$$(-\Delta)^{\frac{\alpha}{2}}u(x) := C_{d,\alpha} \text{P.V.} \int_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d + \alpha}} dy,$$
$$C_{d,\alpha} := \frac{\alpha^{2^{\alpha - 1}} \Gamma\left(\frac{\alpha + d}{2}\right)}{\pi^{d/2} \Gamma\left(\frac{2 - \alpha}{2}\right)}.$$

- $\mathcal{F}[(-\Delta)^{\frac{\alpha}{2}}u](\xi) = |\xi|^{\alpha}\mathcal{F}[u](\xi),$
- $J_{\frac{\alpha}{2}}$ has a non-integrable singularity, and is heavy-tailed.

Fractional diffusion equation: $\partial_t u + (-\Delta)^{\frac{\alpha}{2}} u = 0$.

Nonlinear diffusion equation

$$\partial_t u - \underbrace{\Delta(|u|^{m-1}u)}_{\nabla \cdot (D(u)\nabla u)} = 0$$

$$D(u) := \frac{|u|^{m-1}}{m}$$
: diffusion coefficient

m > 1	0 < m < 1
Porous medium equation	Fast diffusion equation
$\lim_{u\to 0}D(u)=0$	$\lim_{u\to 0} D(u) = +\infty$
Finite speed of propagation	Extinction phenomenon

11

Shorthand:
$$u^m = |u|^{m-1}u \rightarrow \partial_t u - \Delta u^m = 0$$

Fractional nonlinear diffusion equation on bounded domain

$$\partial_t u + (-\Delta)^{\frac{\alpha}{2}} u^m = 0$$

Change of variable: q := 1/m + 1, $v = u^m$

Fractional nonlinear diffusion equation on a bounded domain Ω

$$\begin{cases} \partial_t v^{q-1} + (-\Delta)^{\frac{\alpha}{2}} v = 0 & \text{in } \Omega \times (0, +\infty), \\ v = 0 & \text{in } (\mathbb{R}^d \setminus \Omega) \times (0, +\infty), \\ v(\cdot, 0) = v_0 & \text{in } \Omega. \end{cases}$$
 (CDP)

- $q \in (1,2)$: fractional porous medium equation,
- $q \in (2, +\infty)$: fractional fast diffusion equation.

Energy decay estimates: porous medium case

Proposition ([Bonforte, Vazquez], [Akagi, S.])

Assume $q \in (1,2)$. Let v be an energy solution of (CDP). There exist c, C > 0 such that, for any t > 0,

$$\left(\|v^0\|_{L^q(\mathbb{R}^d)}^{q-2}+ct\right)^{\frac{1}{q-2}}\leq \|v(t)\|_{L^q(\mathbb{R}^d)}\leq \left(\|v^0\|_{L^q(\mathbb{R}^d)}^{q-2}+Ct\right)^{\frac{1}{q-2}}.$$

Energy decay estimates: fast diffusion case

Proposition ([Bonforte, Ibarrondo, Ispizua], [Akagi, S.])

Assume $q \in (2, 2^*_{\alpha}]$. Let v be an energy solution of (CDP). There exist c, C > 0 such that, for any t > 0,

$$\left(\|v_0\|_{L^q(\mathbb{R}^d)}^{q-2}-ct\right)_+^{\frac{1}{q-2}}\leq \|v(t)\|_{L^q(\mathbb{R}^d)}\leq \left(\|v_0\|_{L^q(\mathbb{R}^d)}^{q-2}-Ct\right)_+^{\frac{1}{q-2}}.$$

In particular, u extincts at a time $t_* \leq T_* := \frac{\|v^0\|_{L^q(\mathbb{R}^d)}^{q-2}}{C}$.

Moreover, for any t > 0,

$$c(t_*-t)_+^{rac{1}{q-2}} \leq \|v(t)\|_{L^q(\mathbb{R}^d)} \leq C(t_*-t)_+^{rac{1}{q-2}},$$

and the same is true when $\|\cdot\|_{L^q(\mathbb{R}^d)}$ is replaced by $\|\cdot\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}$.

Idea of proof

Lemma (Fractional Sobolev inequality)

Let $2^*_{lpha}:=rac{2d}{(d-lpha)_+}$, and $q\in(1,2^*_{lpha}].$ There exists K>0 such that,

$$||u||_{L^q(\mathbb{R}^d)} \leq K[u]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} = K\sqrt{\left((-\Delta)^{\frac{\alpha}{2}}u,u\right)_{L^2(\mathbb{R}^d)}},$$

for any $u \in H^{\frac{\alpha}{2}}(\mathbb{R}^d)$ with $u \equiv 0$ in $\mathbb{R}^d \setminus \Omega$.

- Obtain energy identity from the variational form of the equation,
- Use the fractional Sobolev inequality, or monotonicity of Rayleigh quotient, to obtain an ordinary differential inequality,
- Integrate the ordinary differential inequality.

Energy inequalities

Proposition ([Akagi, S.])

Let
$$v_0 \in H^{\frac{\alpha}{2}}(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$$
 such that $u_0 \equiv 0$ in $(\mathbb{R}^d \setminus \Omega) \times (0, +\infty)$ and
$$|v_0|^{q-2} v_0 \in L^{(2^*_\alpha)'}(\Omega) \quad \text{if } q > 2^*_\alpha.$$

There exists a unique weak solution to (CDP). It satisfies

$$\frac{1}{q'} \|v(t)\|_q^q + \int_s^t [v(r)]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}^2 dr = \frac{1}{q'} \|v(s)\|_q^q \quad \text{for any } s \le t$$

$$\frac{4}{qq'} \int_s^t \|\partial_t (v^{\frac{q}{2}})(r)\|_2^2 dr + \frac{1}{2} [v(t)]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}^2 \le \frac{1}{2} [v(s)]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} \quad \text{for any } s \le t$$

Idea of proof of existence and *inequalities*: Pass to the limit in the minimizing movement scheme

$$\frac{(v_{n+1})^{q-1}-(v_n)^{q-1}}{\Delta t}+(-\Delta)^{\frac{\alpha}{2}}v^{n+1}=0.$$

Decay of Rayleigh quotient

Proposition

Assume $q \in (1, \infty)$. Let v be an energy solution to (CDP). Define the Rayleigh quotient by

$$R(t) = rac{[v(t)]_{H^{rac{lpha}{2}}(\mathbb{R}^d)}^2}{\|v(t)\|_{L^q(\mathbb{R}^d)}^2}, \quad t \geq 0.$$

Then $t \in [0, \infty) \mapsto R(t)$ is non-increasing as far as $u(t) \not\equiv 0$.

Idea of proof:

- Show $\frac{\mathrm{d}R(t)}{\mathrm{d}t} \leq 0$ a.e. using energy inequalities,
- ② Use absolute continuity of $t \mapsto \|v(t)\|_q$, decay of $t \mapsto [v(t)]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}$ and right-continuity of $t \mapsto R(t)$.

Outline of proof

$$R(t) = rac{f(t)}{g(t)},$$
 $f(t) := [v(t)]_{H^{rac{lpha}{2}}(\mathbb{R}^d)}^2 \in BV(0,T), \quad g(t) := \|v(t)\|_q^2 \in AC(0,T).$

- Show $\frac{dR(t)}{dt} \le 0$ a.e. using energy inequalities,
- 2 Lebesgue decomposition's theorem:

$$DR = g \frac{df}{dt} \mathcal{L}^1 + g(Df)_s + f \frac{dg}{dt} \mathcal{L}^1 = \frac{dR}{dt} + g(Df)_s,$$

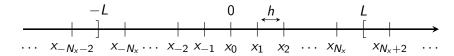
- R right-continuous: $R(t) R(s) = DR((s, t]) \le 0$.

- Background on fractional nonlinear diffusion equation
- 2 Numerical analysis of fractional nonlinear diffusion equation
- Computation of extinction time and large time asymptotics

Notation

We restrict to dimension d = 1.

• $\Omega = (-L, L)$, space step $h = L/(N_x + 1)$:



• time step $\Delta t > 0$.

For u a fonction over $[0, +\infty) \times \mathbb{R}$,

$$u_i^n := u(n\Delta t, ih),$$

 $\|u^n\|_{l_h^q(\mathbb{R})}^q := \sum_{i \in \mathbb{Z}} |u_i|^q h.$

Discretization of the fractional Laplacian

$$(-\Delta)^{\frac{\alpha}{2}}u(x_i) := C_{d,\alpha}\left(\underbrace{\text{P.V.}\!\int_{|x_i-y|< h}\!\frac{u_i-u(y)}{|x_i-y|^{d+\alpha}}\mathrm{d}y}_{\text{singular part}} + \underbrace{\int_{|x_i-y|> h}\!\frac{u_i-u(y)}{|x_i-y|^{d+\alpha}}\mathrm{d}y}_{\text{tail part}}\right)$$

- singular part: u(y) replaced by Taylor expansion,
- tail part: u(y) replaced by piecewise quadratic interpolation.

Then integrating explicitly yields, for some weights $(\gamma_i^h)_{j\in\mathbb{Z}}$.

$$(-\Delta)^{\frac{\alpha}{2}}u(x_i)\approx \sum_{j\in\mathbb{Z}}\gamma_j^h(u_i-u_{i-j}).$$

Convergence result: For $u \in C^4$, the error is in $\mathcal{O}(h^{3-\alpha})$.

➤ Y. Huang and A. Oberman. "Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach", 2014.

Convolution structure of the discrete fractional Laplacian

$$\begin{split} \left[(-\Delta)_h^{\frac{\alpha}{2}} u \right]_i &:= \sum_{j \in \mathbb{Z}} \gamma_j^h (u_i - u_{i-j}) \\ \updownarrow \\ (-\Delta)^{\frac{\alpha}{2}} u(x_i) &= \text{P.V.} \int_{\mathbb{R}^d} \frac{C_{1,\alpha}}{|z|^{1+\alpha}} (u(x_i) - u(x_i - z)) \mathrm{d}z. \end{split}$$

Theorem ([Ayi, Herda, Hivert, Tristani, 2022])

There exists positive constants b_{α} and B_{α} independent of h such that

$$\frac{b_{\alpha}}{|jh|^{1+\alpha}}h \leq \gamma_j^h \leq \frac{B_{\alpha}}{|jh|^{1+\alpha}}h.$$

Convolution structure of the discrete fractional Laplacian

For u a Schwartz function,

$$\sum_{i\in\mathbb{Z}} h\left[\left(-\Delta\right)_{h}^{\frac{\alpha}{2}} u\right]_{i} \ u_{i} = \frac{1}{2} \underbrace{\sum_{i\in\mathbb{Z}, j\in\mathbb{Z}} h \gamma_{j}^{h} |u_{i} - u_{i-j}|^{2}}_{=:[u]_{H_{L}^{\frac{\alpha}{2}}(\mathbb{R})}^{2}} \sim [u]_{H^{\frac{\alpha}{2}}(\mathbb{R})}^{2},$$

Lemma ([Ciaurri, Roncal, Stinga, Torrea, Varona] Discrete fractional Sobolev inequality)

For $q \leq 2^*_{\alpha}$, there exists K > 0 independent of h,

$$||u||_{I_h^q(\mathbb{R})} \leq K[u]_{H_h^{\frac{\alpha}{2}}(\mathbb{R})},$$

for $u \in \mathbb{Z}^{\mathbb{N}}$ with $u \equiv 0$ outside Ω .

Numerical scheme for fractional nonlinear diffusion equation

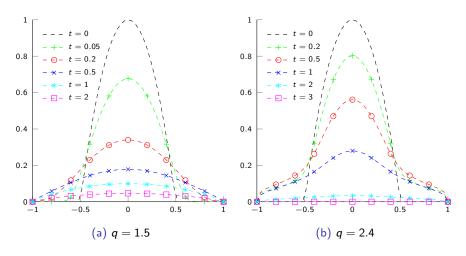
Implicit scheme for CDP

$$\begin{split} \frac{(u_i^{n+1})^{q-1} - (u_i^n)^{q-1}}{\Delta t} + \left[(-\Delta)_h^{\frac{\alpha}{2}} u^{n+1} \right]_i &= 0, \qquad |i| \leq N_x \text{ and } n \geq 0, \\ u_i^n &= 0, \qquad |i| \geq N_x + 1 \text{ and } n \geq 0, \\ u_i^0 &= (u^0)_i \quad |i| \leq N_x. \end{split}$$

Properties as the continuous equation:

- decay estimates,
- almost extinction phenomenon in FDE case.

Figure: $\alpha = 0.5, h = 0.04, \Delta t = 0.001, L = 1$



Discrete decay estimates: porous medium case

Proposition ([Hivert, S.])

Assume $q \in (1,2)$. There exists $(\beta_n^{\Delta t})_{n\geq 0}$, independent of h, such that

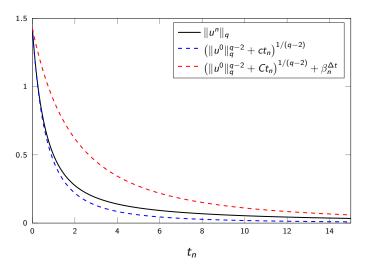
$$\|u^n\|_{l^q_h(\mathbb{R})} \leq \left(\|u^0\|_{l^q_h(\mathbb{R})}^{q-2} + Cn\Delta t\right)^{\frac{1}{q-2}} + \beta_n^{\Delta t}, \quad \text{for any } n \geq 0.$$

Moreover,

$$\sup_{n>0} \beta_n^{\Delta t} \to 0, \quad \text{as } \Delta t \to 0.$$

Numerical results: energy decay for PME

Figure: Energy decay for $q = 1.5, \alpha = 0.5, h = 0.04, \Delta t = 0.03, L = 5.$



Discrete decay estimates: fast diffusion case

Proposition ([Hivert, S.])

Assume $q \in (2, 2^*_{\alpha}]$.

• Decay estimate: There exists $(\beta_n^{\Delta t})_{n\geq 0}$, independent of h, such that

$$\|u^n\|_{l^q_h(\mathbb{R})} \leq \left(\|u^0\|_{l^q_h(\mathbb{R})}^{q-2} - Cn\Delta t\right)_+^{\frac{1}{q-2}} + \beta_n^{\Delta t}, \quad \text{for any } n \geq 0.$$

Moreover,

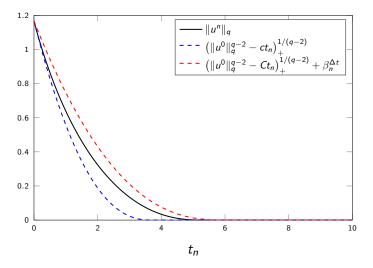
$$\sup_{n>0}\beta_n^{\Delta t}\to 0,\quad \text{as } \Delta t\to 0.$$

• Extinction estimate:

$$\|u^n\|_{l_h^q(\mathbb{R})} \leq \|u^0\|_{l_h^q(\mathbb{R})} \left(\frac{T_*}{n\Delta t}\right)^{n/2}, \quad \text{for any } n \geq 0.$$

Numerical results: energy decay for FDE

Figure: Energy decay for $q=2.4, \alpha=0.5, h=0.04, \Delta t=0.03, L=5.$



Idea of proof

1 Obtain energy inequality,

$$\frac{1}{q'}\frac{\|u^{n+1}\|_{l_h^q(\mathbb{R})}^q - \|u^n\|_{l_h^q(\mathbb{R})}^q}{\Delta t} + \|u^{n+1}\|_{H_h^{\frac{\alpha}{2}}(\mathbb{R})}^2 \leq 0.$$

 Use discrete fractional Sobolev inequality to obtain a discretization of the ordinary differential inequality,

$$\frac{1}{q'}\frac{\|u^{n+1}\|_{l_h^q(\mathbb{R})}^q - \|u^n\|_{l_h^q(\mathbb{R})}^q}{\Delta t} + K^{-2}\|u^{n+1}\|_{l_h^q(\mathbb{R})}^2 \leq 0.$$

3 Sum in time and use convexity inequalities.

Convergence results

Theorem ([Hivert, S.] Convergence in time)

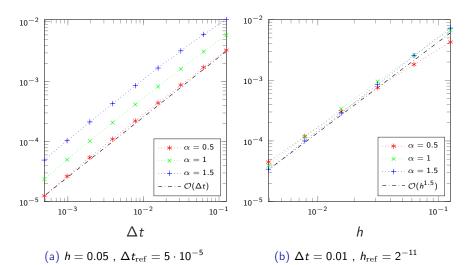
Let $u_i^{\Delta t}(t) = u_i^{n+1}$ when $t \in (n\Delta t, (n+1)\Delta t]$. Then $u_i^{\Delta t} \to u_i$ uniformly on [0, T] for any T > 0, where $(u_i)_{i \in \mathbb{Z}}$ is the solution of the semi-discrete scheme

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}u_i^{q-1}(t) + \left[\left(-\Delta\right)_h^{\frac{\alpha}{2}}u(t)\right]_i = 0, & \text{ for } |i| \leq N_x, \text{ and } t > 0, \\ u_i(t) = 0 & \text{ for } |i| \geq N_x + 1, \text{ and } t \geq 0, \\ u_i(0) = (u_0)_i & \text{ for } |i| \leq N_x. \end{cases}$$

Theorem ([Hivert, S.] Lax-Wendroff type theorem)

Let $u_{\Delta t,h}(x,t) = u(t_n,x_i)$ for $(t,x) \in [t_n,t_{n+1}) \times [x_i-h/2,x_i+h/2)$. Assume $\|u_{\Delta t,h}\|_{\infty} < +\infty$, and $u_{\Delta t,h} \to u$ almost everywhere when $(\Delta t,h) \to 0$. Then u is a weak solution of (CDP).

Figure: Convergence of the scheme for the norm $\|\cdot\|_{I^\infty_{\Delta t}(0,2,I^q_h(\mathbb{R}))}$ q=1.5, L=1



- Background on fractional nonlinear diffusion equation
- 2 Numerical analysis of fractional nonlinear diffusion equation
- 3 Computation of extinction time and large time asymptotics

Rescaled problem

Decay Estimates:

$$2 < q \le 2_{\alpha}^*: \quad c(t_* - t)_+^{\frac{1}{q-2}} \le \|v(t)\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} \le C(t_* - t)_+^{\frac{1}{q-2}}.$$
 $1 < q < 2: \quad c(1+t)^{\frac{1}{q-2}} \le \|v(t)\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} \le C(1+t)^{\frac{1}{q-2}}.$

Rescaled solution:

$$2 < q < 2^*_{lpha}: \quad w(s) := (t_* - t)^{\frac{-1}{q-2}} v(t), \quad s := \log\left(\frac{t_*}{t_* - t}\right).$$
 $1 < q < 2: \quad w(s) := (1 + t)^{\frac{-1}{q-2}} v(t), \quad s := \log(t+1).$

Then
$$\partial_s w^{q-1} + (-\Delta)^{\frac{\alpha}{2}} w = \frac{q-1}{|q-2|} w^{q-1}$$
, and $c < \|w(s)\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < C$

Does w(s) converge as $s \to \infty$?

Rescaled problem

$$\partial_s w^{q-1} + (-\Delta)^{\frac{\alpha}{2}} w = \frac{q-1}{|q-2|} w^{q-1}, \text{ and } c < \|w(s)\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < C$$

Non-fractional FDE case:

- Convergence along subsequences: ➤ Berryman and Holland 1980
- Convergence along the full sequence: ➤ Feireisl and Simondon 2000
- Convergence in relative error: ➤ Bonforte, Grillo, and Vazquez 2012
- Sharp rate of convergence: > Bonforte and Figalli 2021
 - Jin and Xiong 2023
 - > Akagi 2023
 - > Choi, McCann, and Seis 2023

Generalized gradient flow structure for nonlinear diffusion

Define

$$J(w) := \frac{1}{2} [w]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}^2 - \frac{q-1}{q|q-2|} ||w||_{L^q(\mathbb{R}^d)}^q.$$

Then the rescaled solution $s > 0 \mapsto w(s)$ solves

$$\partial_s w^{q-1}(s) = -J'(w(s)), \quad \text{for a.e. } s > 0.$$

Therefore it holds

$$\frac{4}{qq'}\left\|\partial_s(|w|^{(q-2)/2}w)(s)\right\|_{L^2(\Omega)}^2+\frac{\mathrm{d}}{\mathrm{d}s}J(w(s))\leq 0,\quad\text{for a.e. }s>0,$$

and $J(w(\cdot))$ is non-increasing.

Convergence along subsequences

$$\partial_s w^{q-1} + (-\Delta)^{\frac{\alpha}{2}} w = \frac{q-1}{|q-2|} w^{q-1}, \text{ and } c < \|w(s)\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < C.$$

Proposition ([Akagi, S.])

For any $s_n \to +\infty$, there exists a subsequence (still denoted by (s_n)), and $\phi \in H^{\frac{\alpha}{2}}(\mathbb{R}^d) \setminus \{0\}$, with $\phi = 0$ in $\mathbb{R}^d \setminus \Omega$, such that

$$w(s_n) o \phi$$
 strongly in $H^{\frac{\alpha}{2}}(\mathbb{R}^d)$, $(-\Delta)^{\frac{\alpha}{2}}\phi = \lambda_q \phi^{q-1}$ in Ω ,

with
$$\lambda_q := \frac{q-1}{|q-2|} > 0$$
.

Full convergence:

- PME case: uniqueness of positive solution to the stationary problem.
- FDE case: Łojasiewicz-Simon inequality.

PME case: uniqueness to the stationary equation

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u = f(x, u) & \text{in } \Omega, \\ u \ge 0, \ u \not\equiv 0 & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^d \setminus \Omega. \end{cases}$$
 (E)

- (F1) For a.e. $x \in \Omega$, $u \mapsto f(x, u)$ is continuous on $[0, \infty)$ and $u \mapsto f(x, u)/u$ is strictly decreasing on $(0, \infty)$.
- (F2) $\forall u \in [0, \infty), x \mapsto f(x, u) \text{ is in } L^{\infty}(\Omega).$
- (F3) $\exists C \in \mathbb{R}$ s.t. $\forall u \in [0, \infty)$, for a.e. $x \in \Omega$, $f(x, u) \leq C(|u| + 1)$.

Proposition ([Brezis, Oswald], [Akagi,S.])

Let Ω is a bounded $C^{1,1}$ domain of \mathbb{R}^d and assume (F1)–(F3). Then the problem (E) admits at most one weak solution $u \in H^{\alpha/2}(\mathbb{R}^d) \cap L^{\infty}(\Omega)$.

Outline of proof

Assume u, v are two solutions of (E).

1 Dividing the equation for u (resp. v) by u (resp. v) and substracting:

$$\frac{(-\Delta)^{\frac{\alpha}{2}}u(x)}{u(x)} - \frac{(-\Delta)^{\frac{\alpha}{2}}v(x)}{v(x)} = \frac{f(x,u(x))}{u(x)} - \frac{f(x,v(x))}{v(x)}$$

Strict sublinearity of f:

$$\int_{\Omega} \left(\frac{f(x,u(x))}{u(x)} - \frac{f(x,v(x))}{v(x)} \right) (u^2(x) - v^2(x)) \mathrm{d} x \leq 0,$$

with equality iif u = v a.e.

3 "Monotony" of $(-\Delta)^{\frac{\alpha}{2}}$:

$$\left\langle \frac{(-\Delta)^{\frac{\alpha}{2}}u}{u} - \frac{(-\Delta)^{\frac{\alpha}{2}}v}{v}, u^2 - v^2 \right\rangle_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} \geq 0.$$

FDE case: Łojasiewicz-Simon inequality for fractional Laplacian

$$I(w) := \frac{1}{2}[w]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}^2 + \int_{\Omega} \int_0^{w(x)} g(s) \mathrm{d}s \mathrm{d}x.$$

(H0) $g \in C^1(\mathbb{R})$ and g(0) = 0,

(H1) $g \in C^{\infty}((0,\infty))$, and for all $\beta \in (0,\infty)$, there exist $C, M \ge 0$ such that,

$$|g^{(n)}(s)| \le C \frac{M^n n!}{|s|^n}, \quad \forall s \in (0, \beta), \ n \in \mathbb{N}$$

(H2) there exists $0 \leq p < \infty$ with $p \leq 2^*_{\alpha} - 1$ such that

$$|g'(s)| \le C(|s|^{p-1}+1)$$
 for all $s \in \mathbb{R}$.

Lemma ([Akagi, Schimperna, Segatti])

Assume (H0), (H1), (H2), and let $\psi \in H^{\frac{\alpha}{2}}(\mathbb{R}^d) \cap L^{\infty}(\Omega)$ such that $I'(\psi) = 0$ and $\psi > 0$. Then, there exists $\theta \in (0, 1/2]$ and $\omega, \delta > 0$ s.t.

$$|I(w) - I(\psi)|^{1-\theta} \le \omega |I'(w)|_{H^{-\frac{\alpha}{2}}(\Omega)}, \quad \text{if } ||w - \psi||_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < \delta.$$

FDE case: Łojasiewicz inequality

Theorem ([Łojasiewicz])

Let $U \subset \mathbb{R}^d$ open and $f: U \to \mathbb{R}$ a real-analytic function. Let $x_0 \in U$ such that $\nabla f(x_0) = 0$. Then there exists a neighborhood V of x_0 , $\omega > 0$ and $\theta \in (0,1/2]$ such that

$$|f(x)-f(x_0)|^{1-\theta} \leq \omega |\nabla f(x)|, \quad x \in V.$$

Proof for
$$d = 1$$
: $\exists N \ge 2$ s.t. $f^{(N)}(x_0) \ne 0$ and
$$f(x_0 + h) - f(x_0) = \frac{f^{(N)}(x_0)}{N!} h^N + o(h^N),$$

$$f'(x_0 + h) = \frac{f^{(N)}(x_0)}{(N-1)!} h^{N-1} + o(h^{N-1})$$
 $\Rightarrow (f(x_0 + h) - f(x_0))^{\frac{N-1}{N}} = \frac{N!^{1/N}}{Nf^{(N)}(x_0)^{1/N}} f'(x_0 + h) + \underbrace{o(h^{N-1})}_{o(N-1)}$

FDE case: Idea of proof of full convergence

Assume $v(s_n) \to \phi \in H^{\frac{\alpha}{2}}(\mathbb{R}^d)$, with $\phi > 0$ and $(-\Delta)^{\frac{\alpha}{2}}\phi = \frac{q-1}{q-2}\phi^{q-1}$ in Ω .

Energy inequality and Łojasiewicz-Simon inequality:

$$\frac{4}{qq'}\|\partial_s w^{q/2}(s)\|_2^2 + \frac{\mathrm{d}}{\mathrm{d}s}J(w(s)) \le 0, \tag{1}$$

$$|J(w) - J(\phi)|^{1-\theta} \le \omega ||J'(w)||_{H^{-\frac{\alpha}{2}}(\Omega)}, \quad \text{if } ||w - \phi||_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < \delta$$
 (2)

1 Using (1),(2), chain rule and Poincaré-Sobolev inequality, $\exists c_0 > 0$ s.t.

$$\|w(s)-\phi\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}<\delta\Rightarrow c_0\|\partial_s(w^{q-1})(s)\|_{H^{-\frac{\alpha}{2}}(\Omega)}\leq -\frac{\mathrm{d}}{\mathrm{d}s}\left(J(w(s))-J(\phi)\right)^{\theta}.$$

② If $\exists s_0$ s.t. $\forall s > s_0 \| w(s) - \phi \|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} < \delta$, then

$$c_0 \int_s^\infty \|\partial_s(w^{q-1})(s)\|_{H^{-\frac{\alpha}{2}}(\Omega)} \mathrm{d} s \leq (J(w(s)) - J(\phi))^\theta \to 0 \text{ as } s \to \infty.$$

3 If not, we obtain a contradiction extracting a subsequence $\tilde{s_n} \in (s_n, s_{n+1})$ such that $\|w(\tilde{s_n}) - \phi\|_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)} = \delta/2$

Full convergence to the asymptotic profile

Proposition ([Akagi, S.])

Let $q \in (1, 2_{\alpha}^*) \setminus \{2\}$. Assume that $\phi > 0$ and $w(s_n) \to \phi$ strongly in $H^{\frac{\alpha}{2}}(\mathbb{R}^d)$ for some sequence of times $(s_n)_{n \in \mathbb{N}}$ such that $s_n \to +\infty$. Then

$$w(s) o \phi$$
 strongly in $H^{\frac{\alpha}{2}}(\mathbb{R}^d)$ as $s \to +\infty$.

Idea of proof. 1 < q < 2: uniqueness to the stationary equation. $2 < q < 2^*_\alpha$: Łojasiewicz-Simon inequality with the functionnal

$$J(w) := \frac{1}{2} [w]_{H^{\frac{\alpha}{2}}(\mathbb{R}^d)}^2 - \frac{\lambda_q}{q} ||w||_{L^q(\mathbb{R}^d)}^q.$$

Open problems:

- Computation of the extinction time,
- Rate of convergence to the asymptotic profile in FDE case.

Non-fractional FDE: optimal rate of convergence

Assume $q \in (2, 2^*)$.

Linearized equation:

$$\begin{cases} (q-1)\phi^{q-2}\partial_s h = -\mathcal{L}_{\phi,2}h & \text{in } \Omega\times(0,+\infty), \\ h = 0 & \text{in } \partial\Omega\times(0,+\infty), \end{cases}$$

with $\mathcal{L}_{\phi,\alpha}h=(-\Delta)^{\alpha/2}h-(q-1)\lambda_q\phi^{q-2}h$, and $h(s)\approx w(s)-\phi$.

Theorem ([Bonforte, Figalli],[Akagi])

Assume $\alpha=2$ and 0 is not an eigenvalue of $\mathcal{L}_{\phi,2}$, and let ν_k be the first positive eigenvalue of $\mathcal{L}_{\phi,2}/((q-1)\phi^{q-2})$. Then, there exists a constant C>0 such that

$$\left(\int_{\Omega} |\nabla w(x,s) - \nabla \phi|^2 \mathrm{d}x\right)^{1/2} \leq C e^{-\nu_k s}, \quad \text{for } s \geq 0.$$

Numerical approximation of extinction time when q > 2

v: solution to continuous problem with initla data v^0 $t_*(v^0)$: extinction time of v

 \tilde{t} : approximation of $t_*(v^0)$

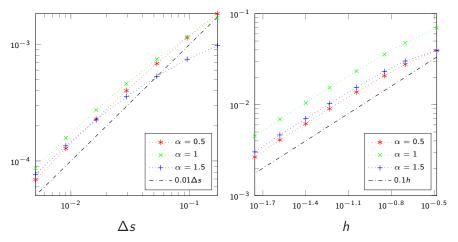
Rescaling with \tilde{t} : $w(s) := (\tilde{t} - t)^{\frac{-1}{q-2}} v(t)$, $s := \log{(\tilde{t}/(\tilde{t} - t))}$.

- $\partial_s w^{q-1} + (-\Delta)^{\frac{\alpha}{2}} w = \frac{q-1}{q-2} w^{q-1}, \quad w(0) = \tilde{t}^{\frac{-1}{q-2}} v^0$
- $\tilde{t} < t_*(v^0) \Rightarrow \|w(s)\|_q \to \infty \text{ as } s \to \infty$,
- $\tilde{t} > t_*(v^0) \Rightarrow w$ extincts in finite time.

Computation of $t_*(v^0)$: dichotomy using the scheme

$$\begin{cases} \frac{(w_i^{n+1})^{q-1} - (w_i^n)^{q-1}}{\Delta s} + \left[(-\Delta)_h^{\frac{\alpha}{2}} w^{n+1} \right]_i = \frac{q-1}{q-2} (w^{n+1})^{q-1}, \\ w_i^0 = \tilde{t}^{-1/(q-2)} (v^0)_i. \end{cases}$$

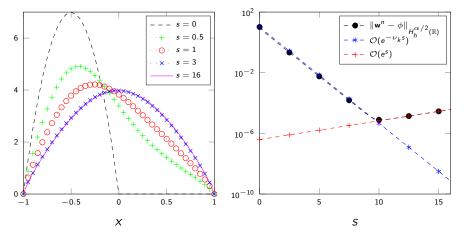
Figure: Convergence of extinction time computed by dichotomy $q=2.4,\,L=1$



(a) Convergence in Δs for h=0.1

(b) Convergence in h for $\Delta s = 0.1$

Figure: Solution of rescaled scheme with t_* computed by dichotomy $\alpha = 1.5, \ q = 2.4 < 2^*_{\alpha}, \ h = 0.01, \ \Delta s = 0.01$



(a) Rescaled solution \mathbf{w}^n

(b) Error with asymptotic profile ϕ ν_k : first positive eigenvalue of the linearized problem

Conclusion

Summary:

- Decay estimates,
 - Numerical scheme with same decay estimates,
 - Convergence to asymptotic profile,
 - Numerical method for computing extinction time in FDE case.

Extensions:

- Rates of convergence to asymptotic profiles in the fractional case,
- Numerical analysis in dimension $d \ge 1$ and better convergence results.

Conclusion

Summary:

- Decay estimates,
 - Numerical scheme with same decay estimates,
 - Convergence to asymptotic profile,
 - Numerical method for computing extinction time in FDE case.

Extensions:

- Rates of convergence to asymptotic profiles in the fractional case,
- Numerical analysis in dimension $d \ge 1$ and better convergence results.

Thank you for your attention!